416 research outputs found

    Warming shifts the biomass distribution of soil microarthropod communities

    Get PDF
    Climate warming is often more detrimental to large body sized organisms than small body sized organisms. Yet, how such differential effects of warming at organismal levels affect aggregate community properties, such as community biomass, remains little understood. Here, using geothermally warmed sub-Arctic grassland soils, we investigate how total biomass (product of density and individual body mass) of two major groups of soil microarthropods (Collembola and mites), which are composed of both large and small body sized species, shift in warmed soils when warmed by ∌3–∌6 °C. Our results show that total biomass of Collembola significantly decreased in warmed soils predominantly due to a decline in the density of large body sized species. In contrast, total mite biomass showed a unimodal response to warming. As a result, there was a shift towards mite biomass dominated microarthropod communities in warmed soils. Within Collembola, the deep soil living eu-edaphic functional group declined the most in total biomass, whereas the unimodal response in mites was most pronounced in oribatid mites. Our study highlights that warming induced shifts in total community biomass of soil microarthropods are likely due to greater detrimental effects of warming on several large body sized Collembola

    Population resistance and recovery after an extreme heat event are explained by thermal effects on life-history traits

    Get PDF
    Extreme heat events lower the fitness of organisms by inducing physiological stress and increasing metabolic costs. Yet, little is known about the role of life-history traits in elucidating population responses to extreme heat events. Here, we used a trait-based approach to understand population resistance and recovery using four closely related species of soil-dwelling Collembola. We measured thermal reaction norms of life-history traits (survival and reproductive traits) and used this information to identify ecological mechanisms linked to population responses after an extreme heat event (i.e. one week at 26–30°C, representing + 10°C above ambient conditions). Furthermore, we investigated potential shifts in the body size distribution of recovering populations to better understand if extreme heat events can restructure body size spectra within populations. While resistance remained unaltered across species in our study, the recovery response of the most heat-sensitive species (Protaphorura pseudovanderdrifti, predominantly a boreal species) was strongly affected by the extreme heat event (−54% population change compared to ambient conditions). Given that the fecundity (linked to recovery) of P. pseudovanderdrifti was more sensitive to heat than their survival (linked to resistance), we detected a decoupling between population resistance and recovery to an extreme heat event in this species. In addition, the detrimental effects of heat on fecundity were largely responsible for a drop in the proportion of small-sized (juvenile) individuals in the recovering populations of P. pseudovanderdrifti. Thermally insensitive resistance and recovery in the other three species (P. armata, P. fimata, P. tricampata; predominantly temperate species) can be explained by their high survival and fecundity at warmer temperatures. We highlight that life-history trait responses to warming can help explain population resistance and recovery after extreme heat events

    Temperature-dependent trade-offs in maternal investments: An experimental test with two closely related soil microarthropods

    Get PDF
    Organisms face trade-offs in their reproductive investment due to energetic constraints. Yet, little is known about how such investments may change at different temperatures, and particularly so in soil invertebrate organisms. Here, we studied two Collembola species (Folsomia candida and Proisotoma minuta) using a long term (several generations) temperature incubation experiment (separately at 15 and 20 ◩C) to investigate how egg size and egg numbers and the trade-off between the two are affected in two temperature regimes. Both species are known to grow at these temperatures, but the variation in their reproductive strategies are little known. Our results show that egg sizes of F. candida were larger in colder temperature whereas no such patterns were found in P. minuta. By contrast, we found no effect of the two temperatures on egg numbers (per clutch) in any of the species. Moreover, we observed a negative correlation (indication of a potential trade-off) between egg size and egg numbers (per clutch) at colder temperature in F. candida, which disappeared in warmer temperature in the same species. No such trade-offs were found in P. minuta. Our results highlight that temperature effects on maternal investments are both trait- and species-specific, particularly when Collembola species are within their optimal thermal niches

    Earthworm distribution and abundance predicted by a process-based model

    Get PDF
    Earthworms are significant ecosystem engineers and are an important component of the diet of many vertebrates and invertebrates, so the ability to predict their distribution and abundance would have wide application in ecology, conservation and land management. Earthworm viability is known to be affected by the availability and quality of food resources, soil water conditions and temperature, but has not yet been modelled mechanistically to link effects on individuals to field population responses. Here we present a novel model capable of predicting the effects of land management and environmental conditions on the distribution and abundance of Aporrectodea caliginosa, the dominant earthworm species in agroecosystems. Our process-based approach uses individual based modelling (IBM), in which each individual has its own energy budget. Individual earthworm energy budgets follow established principles of physiological ecology and are parameterised for A. caliginosa from experimental measurements under optimal conditions. Under suboptimal conditions (e.g. food limitation, low soil temperatures and water contents) reproduction is prioritised over growth. Good model agreement to independent laboratory data on individual cocoon production and growth of body mass, under variable feeding and temperature conditions support our representation of A. caliginosa physiology through energy budgets. Our mechanistic model is able to accurately predict A. caliginosa distribution and abundance in spatially heterogeneous soil profiles representative of field study conditions. Essential here is the explicit modelling of earthworm behaviour in the soil profile. Local earthworm movement responds to a trade-off between food availability and soil water conditions, and this determines the spatiotemporal distribution of the population in the soil profile. Importantly, multiple environmental variables can be manipulated simultaneously in the model to explore earthworm population exposure and effects to combinations of stressors. Potential applications include prediction of the population-level effects of pesticides and changes in soil management e.g. conservation tillage and climate change

    Lewis and AB0 blood group-phenotypes in periodontitis, cardiovascular disease, obesity and stroke

    Get PDF
    Abstract The AB0 blood group has been linked to ischaemic heart disease, stroke, and periodontal disease, while the Lewis blood group has been linked to ischaemic heart disease and obesity, all of which have been associated with periodontitis. AB0 or Lewis blood group phenotype may therefore constitute common hereditary components predisposing to these disorders. In this study, we investigated if blood group phenotype associated with periodontitis in a subpopulation consisting of 702 participants from a Danish cross-sectional cohort and, secondarily, attempted to confirm their association with hypertension, ischaemic heart disease, stroke, and obesity. No significant association between blood group phenotype and periodontitis was detected, nor were previously reported associations between blood group phenotype and hypertension, ischaemic heart disease, stroke, and obesity confirmed. This may, at least partly, be attributed to differences in study type, outcome definitions, cohort sizes, and population attributable factors. However, our results suggested a strong association between self-reported stroke and the Lewis (a−b−) phenotype (P = 0.0002, OR: 22.28; CI 95: 4.72–131.63)

    Ligature-associated bacterial profiles are linked to type 2 diabetes mellitus in a rat model and influenced by antibody treatment against TNF-α or RAGE

    Get PDF
    There is a bidirectional relationship between periodontal disease (PD) and type 2 diabetes mellitus (T2D). T2D may lead to ecological perturbations in the oral environment, which may facilitate an altered microbiota. However, previous studies have been inconclusive in determining the effect of T2D on oral bacterial profiles. Therefore, we aimed to evaluate the influence of T2D on the ligature‐associated bacterial profile in a diabetic rat model with PD and investigated the impact of blocking inflammatory pathways with antibodies targeting either Tumor Necrosis Factor α (TNF‐α) or the receptor of advanced glycation end‐products (RAGE). A total of 62 Zucker obese rats (45 T2D) and 17 lean (non‐T2D) were divided into 4 treatment groups; lean with PD, obese with PD, obese with PD and anti‐TNF‐α treatment, and obese with PD with anti‐RAGE treatment. Periodontal disease was ligature induced. Ligature‐associated bacterial profiles were analyzed using Human Oral Microbe Identification Microarray (HOMIM). Ligature‐associated bacterial profiles differed between lean and obese rats. Furthermore, treatment with antibodies against TNF‐α or RAGE had an impact on subgingival bacterial profiles. T2D phenotypes are associated with different ligature‐associated bacterial profiles and influenced by treatment with antibodies against TNF‐α or RAGE

    Temperature responses in a subarctic springtail from two geothermally warmed habitats

    Get PDF
    Common-garden experiments with populations sampled along natural thermal gradients help to reveal local adaptation, disentangle environmental and genetic effects, and ultimately predict, by analogy, future biotic responses to climate change. In this regard, geothermal habitats are useful model systems as they exhibit dramatic changes in soil temperature. The springtail Protaphorura pseudovanderdrifti has apparently coped with such local geothermal warming in Iceland, as this species occurs along a more than half-century-old geothermal gradient in a grassland and persists along a newly emerged temperature gradient in a previously non-geothermal planted spruce forest. We measured thermal reaction norms for development and walking speed and acute cold shock tolerance of P. pseudovanderdrifti originating from the grassland and forest geothermal gradients. Temperature-dependent juvenile development showed little variation among subpopulations from the recently warmed forest, probably due to insufficient evolutionary time, but springtails from the warmed grassland plots had significantly steeper reaction norms than their counterparts from the corresponding unwarmed plot. In contrast, cold tolerance and locomotory activity showed no conclusive clinal pattern despite significant within-habitat variation. There appeared to be significant differences between habitats, as springtails from the forest had more temperature-sensitive developmental rate and locomotory activity, walked faster, and exhibited more variable cold tolerance than grassland springtails did. The planting of a forest, therefore, seems to have exerted a stronger effect on the thermal phenotype of P. pseudovanderdrifti than the emergence of a geothermal gradient. Thus, habitat properties may be no less important in shaping thermal reaction norms than the mean temperature. These local-scale findings suggest that, in addition to warming per se, global transformation of communities may drive the evolution of thermal phenotypes to an extent comparable with the effect of rising environmental temperature

    Salivary cytokine levels in early gingival inflammation

    Get PDF
    Salivary protein levels have been studied in periodontitis. However, there is lack of information on salivary cytokine levels in early gingival inflammation. The aim of this study was to determine salivary levels of vascular endothelial growth factor (VEGF), interleukin (IL)-8, monocyte chemoattractant protein (MCP)-1, IL-1ÎČ, and IL-1 receptor antagonist (IL-1Ra) in gingival inflammation. Twenty-eight systemically and orally healthy nonsmokers abstained from oral hygiene protocols for 10 days. After that, self-performed cleaning was resumed for 14 days. Plaque and gingival indexes were measured, and saliva samples were collected at days 1, 4, 7, 10, and 24. Salivary cytokines were detected with LuminexÂź-xMAPℱ. Salivary IL-1ÎČ, IL-1Ra, and VEGF levels decreased after 10 days’ development of experimental gingivitis and reached baseline levels at the end of the 2-week resolution period. Salivary IL-8 levels decreased and remained low during development and resolution of experimental gingivitis. Initial inflammation in gingival tissues is associated with a decrease in inflammatory cytokines in saliva. Further studies are needed to evaluate if inflammatory cytokines bind to their functional receptors within the gingival tissue during early gingivitis, which may limits their spillover to the gingival crevice and ultimately saliva.</p
    • 

    corecore